

DISTRIBUTION STATEMENT A
Approved for public release; distribution is unlimited (29 March 2012).

1

Abstract — It has been over 10 years since the first iteration of

Software Communication Architecture (SCA) and more than 5

years since the release of the previous version of the specification,

SCA 2.2.2. While there have been numerous technological

advancements and lessons learned in the field of software defined

radio since the release of SCA 2.2.2, the framework remained

relatively static and was extended to include a small subset of the

new features. The latest specification release, commonly known

as SCA4, incorporates a wider range of resolutions, significantly

optimizes the framework and improves a programmer’s ability to

develop software defined radios efficiently. The new standard

builds on a decade of expertise and makes the SCA even more

relevant in today’s market of resource constrained systems with

the ever increasing need for secure mobile communications.

With the breadth of potential SCA based target platforms and

applications, SCA4 broadens its applicability beyond U.S.

military software defined radios.

Index Terms—[SCA, SDR, JTRS, Android]

I. INTRODUCTION

HE SCA is an open-architecture specification that

defines the interactions between software applications and

hardware platforms. In Joint Tactical Radio System (JTRS),

these software applications are waveforms and the hardware

platforms are radios. The SCA framework has guided the

development and evolution of the software defined radio

domain and its concepts have been used within multiple

industries, products and countries beyond the US DoD

community.

A primary goal of military software defined radios is to

minimize the amount of effort required in porting waveform

applications to different radio platforms – the SCA establishes

the infrastructure to achieve this objective. As illustrated in

Figure 1, an SCA-based software defined radio provides a

standardized infrastructure for software deployment and

configuration; while ensuring interoperability between SCA-

based products. SCA components may be extended by the

JTRS Application Program Interfaces (APIs) to provide

platform specific capabilities. The SCA and JTRS APIs

promote waveform portability and reuse by isolating the

waveform application from the radio set.

The modular nature of SCA4 builds in flexibility for the

evolution of SCA-compliant products and the standard itself

as technology and requirements change. This newest

framework emphasizes flexibility & scalability throughout the

specification. From a system developer perspective, the

flexibility can be used to innovate and provide solutions which

are appropriately tailored to a particular product. For the radio

user, the flexibility permits customization and extension of the

features and capabilities of the original product.

II. PUSH MODEL

The SCA was originally developed with a client-side „pull‟

design pattern which required a multi-step approach to

deploying components in the domain. In SCA 2.2.2

application components register with the naming service upon

entry to the domain and then the ApplicationFactory queries

the naming service to discover when application components

became available. Only after the components have registered

could the ApplicationFactory continue the deployment

process. Use of a vulnerable naming service is no longer

supported in SCA4 and instead replaces it with a „push‟ model

approach, in which an application component is provided

access to an instantiation of the standalone

ComponentRegistry interface that is associated with an

ApplicationFactoryComponent. The application component

registers with the ComponentRegistry instantiation and

provides all of its information upfront with a single call. This

change in the interaction model can achieve real reductions on

boot-up time, perhaps a 50% decrease. An additional „push

model‟ benefit is that, unlike the „pull‟ model approach, it

does not allow access to vulnerable system data and

eliminates the possibility of clients requesting information

they should not have.

III. SCA PORT CONNECTIONS

A component architecture identifies endpoints or

connection point between the individual software components

of a software infrastructure or application. The SCA defines

these endpoints as ports which are similar to a socket

connection in a hardware domain. Illustrated in Figure 2, an

SCA4 – An Evolved Framework

Chalena M. Jimenez, Kevin W. Richardson, and Donald R. Stephens

Joint Tactical Radio System

T

Figure 1 Architecture of SCA-Enabled Radio

DISTRIBUTION STATEMENT A
Approved for public release; distribution is unlimited (29 March 2012).

2

SCA port is a software address that represents a connection

point for a component.

Figure 2 SCA Ports are addresses

Associated with a port is an interface (which can be an

individual interface or an aggregation of interfaces) as

illustrated in Figure 3. Knowledge of the address itself is

insufficient – the communicating component must have

knowledge of the interface. In SCA4, that information is

provided in XML files for every component within the system.

The specific system architecture determines whether the

information is publicly accessible or whether communicating

components must know the interface a priori.

Figure 1 SCA Ports have an associated interface

SCA4 introduces a new static ports feature. Static ports

allow for an implementation specific approach to connection

establishment. Connections can be formed in an efficient

manner at run time or at build time by providing a static

predefined address for the connection. The impact of static

ports is minimal for applications with a limited number of

ports, but the capability will result in substantially more

savings for systems with applications that require hundreds of

port connections.

IV. OPTIONAL INHERITANCE

JTRS SCA-based products support a vast range of

functionality and features. The original SCA defines a fairly

rigid infrastructure which has been successfully implemented

and deployed in software defined radios today. SCA4

augments the current capabilities by providing SCA

infrastructures with the ability to be reconfigured such that

they better align with the maintenance and development needs

of existing and future software defined radios. The majority of

the modifications made to the interfaces in SCA4 are not

significant departures from their earlier counterparts yet they

are essential elements of a more adaptive architecture. The

potential impact of affecting the existing interfaces was

considered during the development process, and a

determination was made that the benefits outweighed the cost.

Fairly simplistic tools could offset the costs associated with

migrating to the new interfaces by providing an offline

translation service to align existing SCA products with the

new interfaces.

For example Figure 4 depicts how the DomainManager

interface changed between SCA 2.2.2 and SCA4. The

majority of the operations and attributes maintain a one-to-one

mapping between the versions, specifically items 1-3 and 6-7

in the example shown in Figure 4. The primary underlying

rationale for the interface change was to introduce a least

privilege pattern at the framework level. Least privilege allows

for a bevy of alternatives in terms of how one lays-out the

components within their system and what information is

readily available to external agents. For example, the

registration methods were moved into new standalone

interfaces, indicated by items 4 and 5 in Figure 4. The

introduction of these new interfaces allows the product

developer to determine which additional information is

essential to provide to external clients.

DISTRIBUTION STATEMENT A
Approved for public release; distribution is unlimited (29 March 2012).

3

Figure 4 – DomainManager Interface Transformation

Previously, the developer was required to implement all of

the inherited interfaces even though all of those interfaces may

not have been necessary. For example, an SCA 2.2.2 Resource

interface inherits the TestableObject interface and needs to

implement the runTest operation regardless of whether or not

the component provides a test capability. SCA4 allows the

developer to only include the interfaces necessary for the

implementation, eliminating unused or underutilized code.

With SCA4, the developer would not include TestableObject

within the interface inheritance hierarchy and not be required

to implement a runTest operation. The SCA4 can lower the

cost of software defined radios with the new optional

inheritance technology, which reduces software development

and maintenance.

Optional inheritance is carried out in SCA4 via directives in

the IDL definitions. Each directive is associated with a Unit

of Functionality (UOF) which is a grouping of requirements

that provides a particular set of functionality. Figure 5

provides a sample excerpt from a generic DeviceManager.idl

and shows how the directives can be utilized in an

implementation. In this example, the Connectable UOF is

enabled (i.e. via #define CONNECTABLE) which results in

the DeviceManager interface extending the PortAccessor

interface. The other UOFs are not enabled and therefore the

DeviceManager interface would not extend any of the other

optional interfaces (i.e. PropertySet, ManagerRelease, and

DeviceManagerAttributes) indicated by grayed-out interfaces

in Figure 5. Optional inheritance‟s benefit is the reduction in

the number of applicable requirements; however one should

not lose sight of the fact that the savings associated with this

feature are distributed across the entire software development

life cycle.

#

#

- No impact

- Refactored to support least
privileged

Key:

4

7
1

1

5

6

6

7

2

3

2

3

SCA 2.2.2 SCA 4.0

5

4

DISTRIBUTION STATEMENT A
Approved for public release; distribution is unlimited (29 March 2012).

4

Figure 5 – Optional Inheritance Directives Example

V. COMPONENT MODEL

SCA4 introduces a component model that benefits

specification users primarily from a system engineering

perspective. One of the comments targeted to earlier SCA

versions was that it was difficult to understand because they

provided “interface centric” system views. The component

model addresses this concern by providing a clear separation

between interfaces (an element that defines “what” needs to be

done or “why” something needs to be done) and components

(a modular, replaceable part of a system within a defined

environment that encompasses both static and dynamic

behaviors or “how” something is done). A notional

representation of the hierarchy of the significant SCA

components is shown in Figure 6.

The introduction of the component model does not imply

significant changes to the existing requirements set. Many of

the requirements in previous versions of the SCA were

behavior based requirements – i.e. requirements that went

beyond the interface level. These behavioral requirements

now appear in a corresponding component in SCA4. An

example of this would be the state transition requirements

previously found in the Device interface are now located

within the DeviceComponent sections of SCA4. It is

important that the distinction between interface and behavioral

requirements be made more evident – this adds usability to the

SCA without incurring great cost on the developer side.

The incorporation of components provides a concrete bridge

from interface to implementation which will become more and

more important as additional optional capabilities are

introduced into the specification. In addition, properly-

developed, component will improve the prospect of enhanced

portability and reuse of detailed architectural artifacts.

#define CONNECTABLE

module CF {

interface DeviceManager : ComponentIdentifier

#if defined (CONNECTABLE)

,PortAccessor

#endif

#if defined (CONFIGURABLE)

,PropertySet

#endif

#if defined (MANAGEMENT_RELEASABLE)

,ManagerRelease

#endif

#if defined (INTERROGABLE)

,DeviceManagerAttributes

#endif

{

};

};

DISTRIBUTION STATEMENT A
Approved for public release; distribution is unlimited (29 March 2012).

5

Figure 6 –SCA Component Hierarchy – Significant Components

VI. EXPANDED FEATURES

SCA4 introduces an intra-application connection

mechanism that allows the framework to connect multiple

applications which may in turn share and exchange

information. This capability permits SCA-based software

defined radios and applications to support the deployment and

interconnection of tactical mobile apps, such as those found in

the U.S. Army‟s Marketplace, an Android-based app store.

The SCA4‟s new connectivity options are ideal for handling

communication to these external apps seamlessly via the

Android presentation layer.

SCA4 also provides leniency on dictating the use of a

specific middleware technology, namely the Common Object

Request Broker Architecture (CORBA). The SCA no longer

mandates the usage of CORBA as the sole middleware option.

CORBA is still a viable alternative for SCA platforms and

applications, but the SCA4 provides mechanisms to extend the

specification with additional transfer mechanisms such as C++

RPC.

VII. COMPLIANCE TESTING

The JTRS Test & Evaluation Laboratory (JTEL) is the test

authority for Compliance Testing of the Software

Communications Architecture (SCA). JTEL performs its

compliance testing using a combination of manual processes

and an automated tool, the JTRS Test Application (JTAP). An

additional feature of the SCA4 specification development

process was the steps that were taken to shorten the overall

development life cycle by increasing the percentage of

automated tests.

Automated testability was expanded in SCA4 through a

combination of actions. The team performed a detailed

assessment of the manually validated SCA 2.2.2 requirements.

The assessment verified that the previous disposition, the

requirement needed manual validation. Once the test method

was confirmed the requirement was analyzed to ensure that it

was a relevant and necessary at the SCA level. If the

requirement was deemed non-essential then the text was either

removed or it was refactored to provide development

guidance. For instances where the first two tests passed, the

requirement was evaluated to see if it could be reworded in a

fashion that preserved the initial intent but made it testable. As

existing requirements were modified or new requirements

inserted within the specification, the team reviewed each

change to insure that it could be tested.

VIII. CONCLUSION

The intent of SCA4 is to enhance the framework‟s ability to

support program specific maintenance and development while

mitigating impact to outstanding platforms. SCA4 takes the

next step in streamlining the development and maintenance of

software defined radios all while promoting flexibility and

security as ingrained features. This newest standard, officially

versioned as SCA 4.0, was approved by the JTRS Interface

Control Working Group (ICWG) and the Wireless Innovation

ApplicationComponent

ApplicationResourceComponent

AssemblyControllerComponent

ControllableComponent

ResourceComponent

Resource

AssemblyComponent

ApplicationManagerComponent

Application

ApplicationFactoryComponent

ApplicationFactory

ApplicationComponentFactoryComponent

ComponentFactoryComponent

ComponentFactory

PlatformComponentFactoryComponent

CF_Serv iceComponent

Serv iceComponent

PlatformComponent

ComponentBaseDev ice

CapacityManagement

DeviceAttributes

ManageableComponent

ParentDevice

ExecutableDev iceComponent

ExecutableDevice

LoadableDev iceComponent

LoadableDevice

Dev iceComponent

Device

Dev iceManagerComponent

DomainManagerComponent

Realizes

ComponentBase

Realizes

ComponentBase

Realizes

ComponentBase

ComponentBase

ComponentIdentifier

ControllableComponent

LifeCycle

PortAccessor

PropertySet

TestableObject

Realized interfaces

not-shown

AggregateDev iceComponent

AggregateDevice

ComponentManagerComponent

ComponentManager

FileComponent

File

FileManagerComponent

FileManager

FileSystemComponent

FileSystem

Realizes

ComponentFactory

Component

Key:
- Abstract Component

- Base Application Component

- CF Service Component - Framework Control Component

- Base Device Component

- Non-CF Service Component

- Common Base Component

DISTRIBUTION STATEMENT A
Approved for public release; distribution is unlimited (29 March 2012).

6

Forum (WINNF) on February 28, 2012.

REFERENCES

[1] Software Communication Architecture, JPEO JTRS, 4.0, 2012

